Many applications exist that deal with relations, between people in a social network, between functions in a software system, or between cities in a transportation network. Typically, such relations are not static, but they are changing more or less frequently over time. This means the social contacts of people may differ from time to time, the function calls may change if new components are implemented, or routes may be blocked due to traffic jams or bad weather conditions.

Getting an overview about the dynamics in relational data is a challenging task. The reason for that is the complexity of the data that consists of several data dimensions like the objects that are related, the relations with their strengths, and also the temporal aspect in the data. In graph visualization these terms are denoted by vertices, edges, and time.

Designing an effective and intuitive visualization for such time-varying graph data is difficult since all of the three data dimensions should be reflected in the visual encoding supporting a graph analyst to easily detect visual patterns that can be remapped to the data patterns. Only by this strategy a dynamic graph visualization becomes useful to relaibly do graph data analysis supported by visual means.

To reach this goal, a visually scalable representation has to be designed in order to support the data analyst right from the beginning and to derive visual patterns. Such an overview can be helpful to find a starting point for further data exploration tasks, i.e., after a starting point is found, hypotheses about the data might be build, confirmed, refined, or even rejected. Interaction techniques play a crucial role and might be applied in any of the data dimensions like vertices, edges, and time periods to dig deeper in the data until details are found.

A visually scalable dynamic graph visualization that serves as an overview is presented in the article “Visualizing a Sequence of a Thousand Graphs (or Even More)” in which the novel concept of interleaving is applied. Each graph in a sequence is made artificially bipartite while the vertices are aligned at common vertical axes. This helps to preserve the viewers’ mental map and to reliably do comparison tasks over longer time spans. Melting the individual graphs horizontally generates visual clutter on the one hand, but if the interleaved dynamic graph visualization is splatted and enhanced by contour lines, the graph analyst obtains a visually scalable static diagram of dynamic data reflecting dynamic patterns. If the graph data is unstructured, an additional hierarchical clustering among the vertices is applicable that further emphasizes evolving graph structures like clusters.

The approach is tested for two different applications. Call graphs in software systems during runtime as well as flight traffic data in the US produce long graph sequences with many vertices and directed weighted edges.

Call graphs in software systems during runtime.
Flight traffic data in the USA.

 

Reference:
Burch, Michael; Hlawatsch, Marcel; Weiskopf, Daniel: Visualizing a Sequence of a Thousand Graphs (or Even More). Computer Graphics Forum 36 (3), S. 261–271 (2017).

 

Interleaving – A Novel Concept for Visually Scalable Dynamic Graph Visualization

Michael Burch is currently a postdoctoral researcher at the Visualization Research Center (VISUS) in Stuttgart, Germany. His main research interests are in information visualization, visual analytics, and user evaluation by eye tracking. He published more than 120 conference papers and journal articles, many of those on the topic of dynamic graph visualization.

Leave a Reply

Mit dem Eintrag in das nachstehende Feld können Sie unter Angabe eines Namens einen Kommentar hinterlassen.

Personenbezogene Daten
Sie haben die Möglichkeit die Kommentarfunktion ohne Angabe von personenbezogenen Daten unter einem Pseudonym zu nutzen.
Name - Bei dieser Angabe handelt es sich um eine Pflichtangabe. Der von Ihnen gewählte Name wird mit dem von Ihnen verfassten Kommentar veröffentlicht.
E–Mailadresse - Bitte beachten Sie, dass die Angabe Ihrer E–Mailadresse zur Nutzung der Kommentarfunktion nicht erforderlich ist. Auch im Falle einer Eingabe wird die E-Mailadresse nicht verwendet, auch nicht veröffentlicht. Bitte lassen Sie dieses Feld unausgefüllt.
Webseite - Die Angabe Ihrer Webseite ist freiwillig. Die von Ihnen angegebene Webseite wird zusammen mit Ihrem Kommentar veröffentlicht.

Nach den §§ 21, 22 LDSG haben Sie das Recht, auf Antrag unentgeltlich Auskunft über die von der Universität Stuttgart und Universität Konstanz über Sie gespeicherten Daten zu erhalten und bei unrichtig gespeicherten Daten deren Berichtigung zu verlangen (Auskunfts- und Berichtigungsrecht). Ein Auskunfts- oder Berichtigungsersuchen richten Sie bitte schriftlich an die Geschäftsstellen des SFB-TRR 161 an der Universität Stuttgart (E-Mail: sfbtrr161[at]visus.uni-stuttgart.de) bzw. der Universität Konstanz (E-Mail: sfbtrr161[at]uni-konstanz.de).